Science Seen: An intestinal toxin’s trick, a potential cancer fighter
Clostridium difficile, also called “C. diff,” causes severe gastrointestinal tract infections and tops the CDC’s list of urgent drug-resistant threats. In work published in Nature in 2016, Min Dong, PhD, and colleagues found the elusive portal that enables a key C. diff toxin, toxin B, to enter the intestines’ outer cells and break down the intestinal barrier (above right).
Interestingly, the same portal, known as the Frizzled receptor, also receives signals that maintain the intestine’s stem cells. When toxin B docks, it blocks these signals, carried by a molecule known as Wnt. But exactly how it all works remained a puzzle — until new research published today in Science.
Liang Tao, PhD in Dong’s lab, working with the labs of Rongsheng Jin, PhD, at UC-Irvine, and Xi He, PhD, at Boston Children’s, captured the crystal structure of a fragment of toxin B (in orange above) as it joined to the Frizzled receptor (in green). The structure revealed lipid molecules within the Frizzled receptor (in yellow and red) that play a central role. Normally, when Wnt binds to Frizzled, it nudges these lipids aside. But the team showed that when the toxin fragment binds to Frizzled, it locks these lipids in place, preventing Wnt from engaging with the cell.
Just as stem cells rely on Wnt signaling for growth and regeneration, so do many cancers. Now that its mechanism is known, Dong thinks this toxin B fragment, which by itself isn’t toxic, could be a useful anti-cancer therapeutic. They’re currently developing a new generation of Wnt signaling modulators and testing them in animal models of cancer. (For further information, contact Boston Children’s Technology & Innovation Development Office at TIDO@childrens.harvard.edu.)
Related Posts :
-
Blood across our lifetimes: An age-specific ‘atlas’ tells a dynamic story
The stem cells that form our blood, also known as hematopoietic stem cells (HSCs), are with us throughout our lives. ...
-
Model enables study of age-specific responses to COVID mRNA vaccines in a dish
mRNA vaccines clearly saved lives during the COVID-19 pandemic, but several studies suggest that older people had a somewhat reduced ...
-
Curbing blood cancers by teaching immune cells to kill mutant stem cells
Blood stem cells, which give rise to all of our blood cell types, undergo a quality assurance process after they’...
-
New insight into the effects of PPIs in children
Proton-pump inhibitors (PPIs) are frequently prescribed to suppress stomach acid in patients with gastroesophageal reflux disease (GERD). Prescribing rates of ...